मराठी

​Find the Principal Value of the Following: Cosec-1(-2) - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal value of the following:

cosec-1(-2)

उत्तर

Let cosec-1(-2) = y

Then,

cosec y = -2

We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}.`

Thus,

cosec y = -2 = `cosec(-pi/6)`

`y=-pi/6in[-pi/2,pi/2],y!=0`

Hence, the principal value of `cosec^-1(-2)    is  -pi/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.05 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 1.2 | पृष्ठ २१

संबंधित प्रश्‍न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin[2cot^-1 ((-5)/12)]`


Which of the following corresponds to the principal value branch of tan–1?


The principal value branch of sec–1 is ______.


The domain of sin–1 2x is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the principle value of `sin^-1 (1/sqrt(2))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×