मराठी

Find the Principal Value of the Following: `Sec^-1(2sin (3pi)/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`

उत्तर

Let `sec^-1(2sin  (3pi)/4)=y`
Then,
`secy=2sin  (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,

`secy=2sin  (3pi)/4=2xx1/sqrt2=sqrt2=sec(pi/4)`

`=>y=pi/4in[0,pi]`

Hence, the principal value of `sec^-1(2sin  (3pi)/4)    is    pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.04 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.04 | Q 1.3 | पृष्ठ १८

संबंधित प्रश्‍न

The principal solution of `cos^-1(-1/2)` is :


The principal solution of the equation cot x=`-sqrt 3 ` is


Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sec(tan^-1  y/2)`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value branch of sec–1 is ______.


The value of `sin^-1 (cos((43pi)/5))` is ______.


One branch of cos–1 other than the principal value branch corresponds to ______.


The domain of sin–1 2x is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The period of the function f(x) = cos4x + tan3x is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×