Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
उत्तर
Let `sec^-1(2sin (3pi)/4)=y`
Then,
`secy=2sin (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy=2sin (3pi)/4=2xx1/sqrt2=sqrt2=sec(pi/4)`
`=>y=pi/4in[0,pi]`
Hence, the principal value of `sec^-1(2sin (3pi)/4) is pi/4`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The domain of sin–1 2x is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The period of the function f(x) = cos4x + tan3x is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`