Advertisements
Advertisements
Question
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Solution
Let `sec^-1(2sin (3pi)/4)=y`
Then,
`secy=2sin (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy=2sin (3pi)/4=2xx1/sqrt2=sqrt2=sec(pi/4)`
`=>y=pi/4in[0,pi]`
Hence, the principal value of `sec^-1(2sin (3pi)/4) is pi/4`
APPEARS IN
RELATED QUESTIONS
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The value of sin (2 sin–1 (.6)) is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function cos–1(2x – 1) is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.