Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
उत्तर
Given: tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Take LHS
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
We know that, Formula
tan−1 x + tan-1 y = tan-1 `(x + y)/(1 - xy)`
Thus,
`=> tan^-1 ((x + 1)+(x - 1))/(1 -(x + 1)xx(x - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1-(x^2 - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1 - x^2 + 1) = tan^-1 8/31`
`=> (2x)/(1 - x^2 + 1) = 8/31`
⇒ 62x = 8 − 8x2 + 8
⇒ 4x2 + 62x − 16 = 0
⇒ 6x2 + 31x − 8 = 0
⇒ 4x(x + 8) − 1(x + 8) = 0
⇒ (4x − 1)(x + 8) = 0
⇒ 6x + 1 = 0 or x − 1 = 0
⇒ x = `1/4` or x = −8
Since,
x = `1/4` ∈ `(-sqrt2, sqrt2)`
So,
x = `1/4` is the root of the given equation
Therefore,
x = `1/4`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 2/3=1/2tan^-1 12/5`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 6).
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.