Advertisements
Advertisements
प्रश्न
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
उत्तर
\[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right) = 2 \sec^{- 1} \left( \sec\frac{\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{\pi}{6} \right)\]
\[ = 2 \times \frac{\pi}{3} + \frac{\pi}{6}\]
\[ = \frac{5\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1)(3x-1)`.
tanx is periodic with period ____________.
The period of the function f(x) = tan3x is ____________.