Advertisements
Advertisements
प्रश्न
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
उत्तर
\[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right) = \tan^{- 1} \left[ \tan\left( \pi + \frac{\pi}{8} \right) \right]\]
\[ = \tan^{- 1} \left[ \tan\left( \frac{\pi}{8} \right) \right]\]
\[ = \frac{\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`sec^-1(sec pi/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`tan^-1 2/3=1/2tan^-1 12/5`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If tan−1 (cot θ) = 2 θ, then θ =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The period of the function f(x) = tan3x is ____________.
Find the value of `sin^-1(cos((33π)/5))`.