Advertisements
Advertisements
प्रश्न
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
उत्तर
Here, `tan^(−1) x+tan^(−1) y=π/4, xy < 1.`
`tan^(-1)((x+y)/(1-xy))=pi/4`
`(x+y)/(1−xy)=1`
`x+y=1−xy`
`x+y+xy=1`
Therefore, the value of x + y + xy is 1.
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
`sin^-1(sin (17pi)/8)`
`sin^-1(sin12)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`tan^-1x+2cot^-1x=(2x)/3`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.