मराठी

Find the value of the following: tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`

उत्तर

We have to find the value of `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]`

We know that: `sin^(-1)(2x)/(1+x^2)=2tan^(-1)x for |x| ≤ 1 …… (1)`

`cos^(-1)(1-y^2)/(1+y^2)=2tan^(-1)y  for y > 0 …… (2)`

`Now sin^(-1)((2x)/(1+x^2)) + cos^(-1)((1-y^2)/(1+y^2))=2tan^(-1)x+2tan^(-1)y`

`tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(1/2)(2tan^(-1)x+2tan^(-1)y)=tan(tan^(-1)x+tan^(-1)y)`

Since, ` tan^(−1)x + tan^(−1)y = tan^(−1)((x+y)/(1-xy)) for xy < 1`

`therefore tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(tan^(−1)((x+y)/(1-xy)))=(x+y)/(1-xy)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×