मराठी

Evaluate the Following: `Cos^-1{Cos (13pi)/6}` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`cos^-1{cos  (13pi)/6}`

उत्तर

We know

`cos^-1(costheta)=thetaif 0<=theta<=pi`

We have

`cos^-1{cos  (13pi)/6}=cos^-1{cos(2pi+pi/6)}`

`= cos^-1{cos(pi/6)}`

`=pi/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 2.4 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin (cot−1 x).


Write the range of tan−1 x.


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×