Advertisements
Advertisements
प्रश्न
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
उत्तर
LHS = `sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+sin^-1sqrt(1-(3/5)^2)` `[because sin^-1x=cos^-1sqrt(1-x^2)]`
`=sin^-1 5/13+sin^-1 4/5`
`=sin^-1[5/13sqrt(1-(4/5)^2)+4/5sqrt(1-(5/13)^2)]` `[because sin^-1x+sin^-1y=sin^-1(xsqrt(1-y^2)+ysqrt(1-x^2))]`
`=sin^-1(5/13xx3/5+4/5xx12/13)`
`=sin^-1(3/13+48/65)`
`=sin^-1(63/65)`
`=tan^-1((63/65)/sqrt(1-(63/65)^2))` `[becausesin^-1x=tan^-1(x/sqrt(1-x^2))]`
`=tan^-1((63/65)/(16/65))`
`=tan^-1(63/16)=` RHS
APPEARS IN
संबंधित प्रश्न
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate:
`sec{cot^-1(-5/12)}`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`