मराठी

Write the Value of \[\Cos^{- 1} \Left( \Frac{1}{2} \Right) + 2 \Sin^{- 1} \Left( \Frac{1}{2} \Right)\]. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].

उत्तर

We have

\[\cos^{- 1} \frac{1}{2} + 2 \sin^{- 1} \frac{1}{2}\]
\[ = \cos^{- 1} \left( \cos\frac{\pi}{3} \right) + 2 \sin^{- 1} \left( \sin\frac{\pi}{6} \right)\]

`[because"The range of sine is" [-pi/2,pi/2];  pi/6 in[-pi/2,pi/2] "and the range of cosine is"  [0,pi] ;  pi/3 in  [0,pi]]`
\[ = \frac{\pi}{3} + 2\left( \frac{\pi}{6} \right)\]
\[ = \frac{\pi}{3} + \frac{\pi}{3}\]
\[ = \frac{2\pi}{3}\]

∴ \[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \frac{2\pi}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 11 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the range of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 (cos 6).


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×