Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec^-1(sec (25pi)/6)`
उत्तर
We know that
sec-1 (sec θ) = θ, [0, π/2) ∪ (π/2, π]
We have
`sec^-1(sec (25pi)/6)=sec^-1[sec(4pi+pi/6)]`
`=sec^-1[sec(pi/6)]`
`=pi/6`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin (17pi)/8)`
`sin^-1(sin12)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`tan^-1 2/3=1/2tan^-1 12/5`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
tanx is periodic with period ____________.
The period of the function f(x) = tan3x is ____________.
Find the value of `sin^-1(cos((33π)/5))`.