मराठी

If tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4 ,find the value of x - Mathematics

Advertisements
Advertisements

प्रश्न

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

उत्तर

 

Given that

`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4`

Taking LHS, we get:

`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))`

`=tan^(-1)[(((x-2)/(x-4)) +((x+2)/(x+4)))/(1-((x-2)/(x-4)) +((x+2)/(x+4)))]`

`=tan^(-1)([((x-2)(x+4)(x+2)(x-4))/(x^2-16-(x^2-4))])`

`=tan^(-1)[(x^2+2x-8+x^2-2x-8)/(12)]`

`=tan^(-1)[(2x^2-16)/(-12)]`

hence

`tan^(-1)[(2x^2-16)/(-12)]=pi/4`

`[(2x^2-16)/(-12)]=tan (pi/4)`

`=>(x^2-8)/(-6)=1`

`=>x^2-8=-6`

`=>x^2=2`

`=>x=+-2`

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of sin (cot−1 x).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×