Advertisements
Advertisements
प्रश्न
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
उत्तर
Given that
`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4`
Taking LHS, we get:
`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))`
`=tan^(-1)[(((x-2)/(x-4)) +((x+2)/(x+4)))/(1-((x-2)/(x-4)) +((x+2)/(x+4)))]`
`=tan^(-1)([((x-2)(x+4)(x+2)(x-4))/(x^2-16-(x^2-4))])`
`=tan^(-1)[(x^2+2x-8+x^2-2x-8)/(12)]`
`=tan^(-1)[(2x^2-16)/(-12)]`
hence
`tan^(-1)[(2x^2-16)/(-12)]=pi/4`
`[(2x^2-16)/(-12)]=tan (pi/4)`
`=>(x^2-8)/(-6)=1`
`=>x^2-8=-6`
`=>x^2=2`
`=>x=+-2`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of sin (cot−1 x).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`