मराठी

Prove that tan^(-1) [(√(1+x)-√(1-x))/(√(1+x)+√(1-x))]=pi/4-1/2 cos^(-1)x,-1/√2<=x<=1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`

उत्तर

To prove

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`

Taking LHS, we get:

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]`

let `x=cos 2theta`

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+cos2theta)+sqrt(1-cos2theta))]=tan^(-1) [(sqrt(1+cos2theta)-sqrt(1-cos2theta))/(sqrt(1+cos2theta)+sqrt(1-cos2theta))]`

`=tan^(-1)[(costheta-sintheta)/(costheta+sintheta)]`

`=tan^(-1)[(1-tantheta)/(1+tantheta)]`

`=tan^(-1) tan(pi/4-theta)`

`=(pi/4-theta)`

`=π/4−θ`

`=π/4−1/2cos^(−1) x`

`=RHS       `

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan12)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×