मराठी

Write the Value of Cos2 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]

उत्तर

\[\text{Let }y = \cos^{- 1} \left( \frac{3}{5} \right)\]
\[ \Rightarrow \cos{y} = \frac{3}{5}\]

Now,

\[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \cos^2 \left( \frac{1}{2}y \right)\]
\[ = \frac{\cos{y} + 1}{2} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \frac{\frac{3}{5} + 1}{2}\]
\[ = \frac{\frac{8}{5}}{2}\]
\[ = \frac{4}{5}\]

∴ \[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \frac{4}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 22 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  pi/6)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin1 (sin 1550°).


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×