Advertisements
Advertisements
प्रश्न
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
उत्तर
\[\text{Let }y = \cos^{- 1} \left( \frac{3}{5} \right)\]
\[ \Rightarrow \cos{y} = \frac{3}{5}\]
Now,
\[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \cos^2 \left( \frac{1}{2}y \right)\]
\[ = \frac{\cos{y} + 1}{2} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \frac{\frac{3}{5} + 1}{2}\]
\[ = \frac{\frac{8}{5}}{2}\]
\[ = \frac{4}{5}\]
∴ \[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \frac{4}{5}\]
APPEARS IN
संबंधित प्रश्न
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin pi/6)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 (sin 1550°).
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`