मराठी

Write the Value of Cos−1 (Cos 350°) − Sin−1 (Sin 350°) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos1 (cos 350°) − sin−1 (sin 350°)

उत्तर

\[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right)\]
\[ = \cos^{- 1} \left\{ \cos\left( {360}^\circ - {350}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( {360}^\circ - {350}^\circ \right) \right\} \left[ \because \sin\left( {360}^\circ - x \right) = - \sin{x} , \cos\left( {360}^\circ - x \right) = \cos{x} \right]\]
\[ \]
\[ = \cos^{- 1} \left\{ \cos\left( {10}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( - {10}^\circ \right) \right\}\]
\[ = {10}^\circ - \left( - {10}^\circ \right)\]
\[ = {20}^\circ \]
\[\]

∴ \[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right) = {20}^\circ\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 21 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin12)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


`sin(sin^-1  1/5+cos^-1x)=1`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×