Advertisements
Advertisements
प्रश्न
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
उत्तर
\[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right)\]
\[ = \cos^{- 1} \left\{ \cos\left( {360}^\circ - {350}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( {360}^\circ - {350}^\circ \right) \right\} \left[ \because \sin\left( {360}^\circ - x \right) = - \sin{x} , \cos\left( {360}^\circ - x \right) = \cos{x} \right]\]
\[ \]
\[ = \cos^{- 1} \left\{ \cos\left( {10}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( - {10}^\circ \right) \right\}\]
\[ = {10}^\circ - \left( - {10}^\circ \right)\]
\[ = {20}^\circ \]
\[\]
∴ \[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right) = {20}^\circ\]
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
`sin(sin^-1 1/5+cos^-1x)=1`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`