मराठी

Prove that : 2 tan^−1(√(a−b/a+b) tan(x2))=cos^−1(acosx+ba+bcosx) - Mathematics

Advertisements
Advertisements

प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 
बेरीज

उत्तर

 

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))`


`=cos^(-1){(1-(sqrt((a-b)/(a+b))tan(x/2))^2)/(1+(sqrt((a-b)/(a+b))tan(x/2))^2)} [∵ 2 tan^(-1) (x)=cos^(−1)((1−x^2)/(1+x^2))]`


`=cos^(-1) {(1-(a-b)/(a+b)tan^2(x/2))/(1+(a-b)/(a+b)tan^2(x/2))}`


`=cos^(-1){(a+b-(a-b)tan^2(x/2))/(a+b+(a-b)tan^2(x/2))}`


`=cos^(-1){(a+b-atan^2(x/2)+btan^(x/2))/(a+b+atan^2(x/2)-btan^(x/2))}`


`=cos^(-1) {(a(1-tan^2(x/2))+b(1+tan^2(x/2)))/(a(1+tan^2(x/2))+b(1-tan^2(x/2)))}`


`=cos^(-1) {(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b((1+tan^2(x/2))/(1+tan^2(x/2))))/(a((1+tan^2(x/2))/(1+tan^2(x/2)))+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`


`=cos^(-1){(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b)/(a+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`


`=cos^(-1){(acosx+b)/(a+bcosx)}`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin1 (sin 1550°).


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×