Advertisements
Advertisements
प्रश्न
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
पर्याय
sin2 α
cos2 α
tan2 α
cot2 α
उत्तर
(a) sin2 α
We know that
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{a}\frac{y}{b} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} \right) = \alpha\]
\[ \Rightarrow \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \cos\alpha\]
\[ \Rightarrow \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \frac{xy}{ab} - \cos\alpha\]
\[ \Rightarrow \left( 1 - \frac{x^2}{a^2} \right)\left( 1 - \frac{y^2}{b^2} \right) = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha \left[\text{ Squaring both the sides }\right]\]
\[ \Rightarrow 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2}{a^2}\frac{y^2}{b^2} = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha\]
\[ \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\alpha = 1 - \cos^2 \alpha = \sin^2 \alpha\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`cos{sin^-1(-7/25)}`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
Find the domain of `sec^(-1)(3x-1)`.
The period of the function f(x) = tan3x is ____________.