Advertisements
Advertisements
प्रश्न
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
पर्याय
0
1/2
− 1
none of these
उत्तर
(d) none of these
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11} = \tan^{- 1} \left( \frac{\frac{1}{11} + \frac{2}{11}}{1 - \frac{1}{11}\frac{2}{11}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{121 - 2}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{119}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{33}{119} \right)\]
\[ = 0 . 27\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate the following:
`sin(sin^-1 7/25)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin−1 (sin 1550°).
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If sin−1 x − cos−1 x = `pi/6` , then x =
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The value of sin `["cos"^-1 (7/25)]` is ____________.