Advertisements
Advertisements
Question
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
Options
0
1/2
− 1
none of these
Solution
(d) none of these
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11} = \tan^{- 1} \left( \frac{\frac{1}{11} + \frac{2}{11}}{1 - \frac{1}{11}\frac{2}{11}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{121 - 2}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{119}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{33}{119} \right)\]
\[ = 0 . 27\]
APPEARS IN
RELATED QUESTIONS
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin4)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the range of tan−1 x.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.