English

Write the Value of Cos−1 (Cos 350°) − Sin−1 (Sin 350°) - Mathematics

Advertisements
Advertisements

Question

Write the value of cos1 (cos 350°) − sin−1 (sin 350°)

Solution

\[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right)\]
\[ = \cos^{- 1} \left\{ \cos\left( {360}^\circ - {350}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( {360}^\circ - {350}^\circ \right) \right\} \left[ \because \sin\left( {360}^\circ - x \right) = - \sin{x} , \cos\left( {360}^\circ - x \right) = \cos{x} \right]\]
\[ \]
\[ = \cos^{- 1} \left\{ \cos\left( {10}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( - {10}^\circ \right) \right\}\]
\[ = {10}^\circ - \left( - {10}^\circ \right)\]
\[ = {20}^\circ \]
\[\]

∴ \[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right) = {20}^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 21 | Page 117

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If sin−1 − cos−1 x = `pi/6` , then x = 


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×