English

If Tan−1 3 + Tan−1 X = Tan−1 8, Then X = (A) 5 (B) 1/5 (C) 5/14 (D) 14/5 - Mathematics

Advertisements
Advertisements

Question

If tan−1 3 + tan−1 x = tan−1 8, then x =

Options

  • 5

  • 1/5

  • 5/14

  • 14/5

MCQ

Solution

(b) `1/5`

We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \frac{x + y}{1 - xy}\]
Now,
\[\tan^{- 1} 3 + \tan^{- 1} x = \tan^{- 1} 8\]
\[ \Rightarrow \tan^{- 1} \left( \frac{3 + x}{1 - 3x} \right) = \tan^{- 1} 8\]
\[ \Rightarrow \frac{3 + x}{1 - 3x} = 8\]
\[ \Rightarrow 3 + x = 8 - 24x\]
\[ \Rightarrow 3 - 8 = - 24x - x\]
\[ \Rightarrow - 5 = - 25x\]
\[ \Rightarrow x = \frac{5}{25} = \frac{1}{5}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 18 | Page 121

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  2/3=1/2tan^-1  12/5`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If sin−1 − cos−1 x = `pi/6` , then x = 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×