English

Write the Following in the Simplest Form: Sin-1{X+Sqrt(1-x2)Sqrt2},-1<X<1 - Mathematics

Advertisements
Advertisements

Question

Write the following in the simplest form:

sin-1{x+1-x22},-1<x<1

Solution

Let x = sin θ

Now,

sin-1{x+1-x22}=sin-1{sinθ+1-sin2θ2}

=sin-1{sinθ+cosθ2}

=sin-1{12sinθ+12cosθ}

=sin-1{cos π4sinθ+sin π4cosθ}

=sin-1{sin(θ+π4)}

=θ+π4

=π4+sin-1x

sin-1{x+1-x22}=cos-1x+π4

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.08 | Page 43

RELATED QUESTIONS

​Find the principal values of the following:
cos-1(-32)


sin-1(sin3)


Evaluate the following:

cos-1{cos(-π4)}


Evaluate the following:

cos-1{cos 5π4}


Evaluate the following:

tan-1(tan 7π6)


Evaluate the following:

sec-1(sec 7π3)


Write the following in the simplest form:

tan-1a-xa+x,-a<x<a


Write the following in the simplest form:

sin{2tan-11-x1+x}


Evaluate the following:

sin(sec-1 178)


Prove the following result

cos(sin-1 35+cot-1 32)=6513


Evaluate:

cot{sec-1(-135)}


Evaluate:

cos(tan-1 34)


Evaluate: sin{cos-1(-35)+cot-1(-512)}


If cot(cos-1 35+sin-1x)=0, find the values of x.


Solve cos-13x+cos-1x=π2


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Solve the following equation for x:

tan-1(x-2x-1)+tan-1(x+2x+1)=π4


If sin-1x+sin-1y+sin-1z=3π2,  then write the value of x + y + z.


If x > 1, then write the value of sin−1 (2x1+x2) in terms of tan−1 x.


If x < 0, then write the value of cos−1 (1-x21+x2) in terms of tan−1 x.


If −1 < x < 0, then write the value of sin-1(2x1+x2)+cos-1(1-x21+x2)


Write the value of cos−1 (cos 1540°).


Write the value of cos(2sin113)


Write the value of cos−1 (cos5π4)


Show that sin1(2x1x2)=2sin1x


Write the principal value of cos1(cos2π3)+sin1(sin2π3)


Write the value of sec1(12)


Write the value of cos1(cos14π3)


Find the value of 2sec12+sin1(12)


Find the value of cos1(cos13π6)


The positive integral solution of the equation
tan1x+cos1y1+y2=sin1310 is 


The value of sin1(cos33π5) is 

 


The value of  sin(2(tan10.75)) is equal to

 


If y = sin (sin x), prove that d2ydx2+tanxdydx+ycos2x=0.


Find : 2cosx(1sinx)(1+sin2x)dx .


The value of sin [cos-1(725)] is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.