English

Find : ∫ 2 Cos X ( 1 − Sin X ) ( 1 + Sin 2 X ) D X . - Mathematics

Advertisements
Advertisements

Question

Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .

Solution

\[\text { Let }  \sin  x   =   t   \Rightarrow   \cos x  dx   =   dt\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}\] 
\[\text { Using  partial  fraction }\] 
\[\frac{2}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \frac{A}{\left( 1 - t \right)} +   \frac{Bt + C}{\left( 1 + t^2 \right)}\] 
\[\text { On  solving } A   = 1,   B   =   1,   C   =   1\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \int\frac{dt}{\left( 1 - t \right)} + \int\frac{\left( 1 + t \right)}{\left( 1 + t^2 \right)}dt\] 
\[ = \int\frac{dt}{\left( 1 - t \right)}   +   \int\frac{dt}{\left( 1 + t^2 \right)} + \int\frac{t  dt}{\left( 1 + t^2 \right)}\] 
\[ =    - \ln  (1 - t)   +    \tan^{- 1} t   +   \frac{1}{2}\ln\left( 1 + t^2 \right)\] 
\[ =   \ln  \frac{\sqrt{1 + t^2}}{1 - t}   +    \tan^{- 1} t   +   C\] 
\[\text { Replacing  the  value  of  t }\] 
\[ = \ln  \frac{\sqrt{1 + \sin^2 x}}{1 - \sin x}   +    \tan^{- 1} (\sin  x)   +   C\] 
shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) All India Set 3

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×