English

If a Line Makes Angles 90° and 60° Respectively with the Positive Directions of X and Y Axes, Find the Angle Which It Makes with the Positive Direction of Z-axis. - Mathematics

Advertisements
Advertisements

Question

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.

Solution

Let the direction cosines of the line be l, m and n.

We know that l2 + m2 + n2 = 1.

Let the line make angle θ with the positive direction of the z-axis.

α=90°, β=60°, γ

So, cos290°+cos260°+cos2θ=1

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Delhi Set 1

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×