English

Prove the Following Result Tan(Cos-145+Tan-123)=176 - Mathematics

Advertisements
Advertisements

Question

Prove the following result

tan(cos-1 45+tan-1 23)=176

Solution

LHS=tan(cos-1 45+tan-1 23)=tan(tan-1 1-(45)245+tan-1 23)    [cos-1x=tan-1(1-x2x)]

=tan(tan-1 34+tan-1 23)

=tan[tan-1(34+231-34×23)]      [tan-1x+tan-1y=tan-1(x+y1-xy)]

=tan[tan-1(1712612)

=tan[tan-1 176]

=176=RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.08 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.1 | Page 54

RELATED QUESTIONS

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of  f(x)=2cos-12x+sin-1x.


​Find the principal values of the following:

cos-1(-12)


​Find the principal values of the following:

cos-1(tan 3π4)


sin-1(sin 7π6)


Evaluate the following:

cos-1{cos(-π4)}


Evaluate the following:

tan-1(tan4)


Evaluate the following:

cosec-1(cosec 13π6)


Evaluate the following:

cot-1{cot(-8π3)}


Evaluate the following:

cot-1{cot (21π4)}


Write the following in the simplest form:

sin-1{1+x+1-x2},0<x<1


Solve: cos(sin-1x)=16


Evaluate:

sin(tan-1x+tan-1 1x) for x < 0


If cot(cos-1 35+sin-1x)=0, find the values of x.


Prove the following result:

tan-1 17+tan-1 113=tan-1 29


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =π12> 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 (879), x > 0


Evaluate: cos(sin-1 35+sin-1 513)


Prove that:

2sin-1 35=tan-1 247


2tan-1 15+tan-1 18=tan-1 47


Prove that

sin{tan-1 1-x22x+cos-1 1-x22x}=1


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Solve the following equation for x:

2tan-1(sinx)=tan-1(2sinx),xπ2


Write the value of tan1 x + tan−1 (1x)  for x < 0.


Evaluate sin (tan134)


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of sin-1(-12)


Write the principal value of sin1{cos(sin112)}


Find the value of 2sec12+sin1(12)


The positive integral solution of the equation
tan1x+cos1y1+y2=sin1310 is 


 If cos1x3+cos1y2=θ2, then 4x212xycosθ2+9y2=


If 3sin1(2x1+x2)4cos1(1x21+x2)+2tan1(2x1x2)=π3 is equal to

 


It tan1x+1x1+tan1x1x=tan1   (−7), then the value of x is

 


The value of  sin(2(tan10.75)) is equal to

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


The domain of  cos1(x24) is

 


Find the domain of sec-1(3x-1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.