हिंदी

Prove the Following Result `Tan(Cos^-1 4/5+Tan^-1 2/3)=17/6` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`

उत्तर

LHS=`tan(cos^-1  4/5+tan^-1  2/3)=tan(tan^-1  sqrt(1-(4/5)^2)/(4/5)+tan^-1  2/3)`    `[thereforecos^-1x=tan^-1(sqrt(1-x^2)/x)]`

`=tan(tan^-1  3/4+tan^-1  2/3)`

`=tan[tan^-1((3/4+2/3)/(1-3/4xx2/3))]`      `[thereforetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`

`=tan[tan^-1((17/12)/(6/12))`

`=tan[tan^-1  17/6]`

`=17/6=`RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.08 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.1 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`sin^-1(sin4)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the range of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×