हिंदी

Write the Value of Cos − 1 ( − 1 2 ) + 2 Sin − 1 ( 1 2 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .

उत्तर

For any x ∈ [−1, 1], cos−1x represents an angle in [0, \[\pi]\] whose cosine is x.

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right)\] =any angle in [0, \[\pi\]] whose cosine is \[- \frac{1}{2}\] .

\[\Rightarrow \cos^{- 1} \left( - \frac{1}{2} \right) = \frac{2\pi}{3}\]

Similarly,

\[\sin^{- 1} \left( \frac{1}{2} \right)\] = an angle in \[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] whose sine is \[\frac{1}{2}\] . 

\[\Rightarrow \sin^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{6}\]

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] =

\[\frac{2\pi}{3} + 2\left( \frac{\pi}{6} \right) = \frac{4\pi + 2\pi}{6} = \pi\]

Hence,

\[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \pi\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 (cos 6).


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×