हिंदी

Solve the Following Equation For X: `Tan^-1((2x)/(1-x^2))+Cot^-1((1-x^2)/(2x))=(2pi)/3,X>0` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

`thereforetan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3`

`=>tan^-1((2x)/(1-x^2))+tan^-1((2x)/(1-x^2))=(2pi)/3`    `[becausecot^1x=tan^-1  1/x]`

`=>tan^-1((2x)/(1-x^2))=pi/3`

`=>2tan^-1x=pi/3`     `[because2tan^-1xtan^-1((2x)/(1-x^2))]`

`=>tan^-1x=pi/6`

`=>x=tan  pi/6`

`=>x=1/sqrt3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 8.3 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×