हिंदी

The Domain of Cos − 1 ( X 2 − 4 ) is (A) [3, 5] (B) [−1, 1] (C) [ − √ 5 , − √ 3 ] ∪ [ √ 3 , √ 5 ] (D) [ − √ 5 , − √ 3 ] ∩ [ √ 3 , √ 5 ] - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 

विकल्प

  • [3, 5]

  • [−1, 1]

  •  \[\left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]

  •  \[\left[ - \sqrt{5}, - \sqrt{3} \right] \cap \left[ \sqrt{3}, \sqrt{5} \right]\]

MCQ

उत्तर

The domain of \[\cos^{- 1} \left( x \right)\] is [-1, 1]

\[\therefore - 1 \leq x^2 - 4 \leq 1\]
\[ \Rightarrow - 1 + 4 \leq x^2 - 4 + 4 \leq 1 + 4\]
\[ \Rightarrow 3 \leq x^2 \leq 5\]
\[ \Rightarrow \pm \sqrt{3} \leq x \leq \pm \sqrt{5}\]
\[ \Rightarrow x \in \left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]

Hence, the correct answer is option (c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 34 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Write the value of sin (cot−1 x).


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the range of tan−1 x.


Write the value of cos−1 (cos 6).


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×