Advertisements
Advertisements
प्रश्न
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
विकल्प
[3, 5]
[−1, 1]
\[\left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]
\[\left[ - \sqrt{5}, - \sqrt{3} \right] \cap \left[ \sqrt{3}, \sqrt{5} \right]\]
उत्तर
The domain of \[\cos^{- 1} \left( x \right)\] is [-1, 1]
\[\therefore - 1 \leq x^2 - 4 \leq 1\]
\[ \Rightarrow - 1 + 4 \leq x^2 - 4 + 4 \leq 1 + 4\]
\[ \Rightarrow 3 \leq x^2 \leq 5\]
\[ \Rightarrow \pm \sqrt{3} \leq x \leq \pm \sqrt{5}\]
\[ \Rightarrow x \in \left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]
Hence, the correct answer is option (c).
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the range of tan−1 x.
Write the value of cos−1 (cos 6).
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin `["cos"^-1 (7/25)]` is ____________.
Find the value of `sin^-1(cos((33π)/5))`.