Advertisements
Advertisements
प्रश्न
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
उत्तर
We know that
\[\tan^{- 1} x - \tan^{- 1} y = \tan^{- 1} \left( \frac{x - y}{1 + xy} \right)\]
Now,
\[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right) = \tan^{- 1} \left( \frac{\frac{a}{b} - \frac{a - b}{a + b}}{1 + \frac{a}{b}\frac{a - b}{a + b}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{a^2 + ab - ab + b^2}{b\left( a + b \right)}}{\frac{ab + b^2 - ab + a^2}{b\left( a + b \right)}} \right)\]
\[ = \tan^{- 1} \left( 1 \right)\]
\[ = \tan^{- 1} \left( \tan\frac{\pi}{4} \right) \left[ \because \tan\frac{\pi}{4} = 1 \right]\]
\[ = \frac{\pi}{4}\]
∴ \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right) = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`