Advertisements
Advertisements
प्रश्न
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
उत्तर
We know that
\[\tan^{- 1} x - \tan^{- 1} y = \tan^{- 1} \left( \frac{x - y}{1 + xy} \right)\]
Now,
\[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right) = \tan^{- 1} \left( \frac{\frac{a}{b} - \frac{a - b}{a + b}}{1 + \frac{a}{b}\frac{a - b}{a + b}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{a^2 + ab - ab + b^2}{b\left( a + b \right)}}{\frac{ab + b^2 - ab + a^2}{b\left( a + b \right)}} \right)\]
\[ = \tan^{- 1} \left( 1 \right)\]
\[ = \tan^{- 1} \left( \tan\frac{\pi}{4} \right) \left[ \because \tan\frac{\pi}{4} = 1 \right]\]
\[ = \frac{\pi}{4}\]
∴ \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right) = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`