Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cos^-1{cos(-pi/4)}`
उत्तर
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1{cos(-pi/4)}=cos^-1{cos(pi/4)}`
`=pi/4`
APPEARS IN
संबंधित प्रश्न
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The period of the function f(x) = tan3x is ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`