Advertisements
Advertisements
प्रश्न
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
पर्याय
0.75
1.5
0.96
`sin^-1 1.5`
उत्तर
\[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right) = \sin\left( 2 \tan^{- 1} 0 . 75 \right)\]
\[ = \sin\left( \sin^{- 1} \frac{2 \times 0 . 75}{1 + \left( 0 . 75 \right)^2} \right)\]
\[ = \sin\left( \sin^{- 1} 0 . 96 \right)\]
\[ = 0 . 96\]
Hence, the correct answer is option (c).
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 (cos 6).
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1) x-tan^(-1)x`