मराठी

Write the Value of Cot − 1 ( − X ) for All X ∈ R in Terms of Cot − 1 ( X ) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`

उत्तर

We know that 
\[\cot^{- 1} \left( - x \right) = \pi - \cot^{- 1} \left( x \right)\] Therefore, the value of  \[\cot^{- 1} \left( - x \right)\]  for all `x in R`   in terms of `cot^-1(x)`   is `pi-cot^-1(x)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 54 | पृष्ठ ११९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 (cos 1540°).


Write the value of sin1 (sin 1550°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×