Advertisements
Advertisements
प्रश्न
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
उत्तर
Let `cos^-1(-sqrt3/2) = y`
Then,
`cosy=-sqrt3/2`
We know that the range of the principal value branch is [0, π].
Thus,
`cosy=-sqrt3/2=cos((5pi)/6)`
`=>y=(5pi)/6in[0,pi]`
Hence, the principal value of `cos^-1(-sqrt3/2)` is `(5pi)/6.`
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of sin `["cos"^-1 (7/25)]` is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`