मराठी

Show that `2tan^-1x+Sin^-1 (2x)/(1+X^2)` Is Constant For X ≥ 1, Find that Constant. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.

उत्तर

We have 

`2tan^-1x+sin^-1  ((2x)/(1+x^2))`

(1) For 1,

`=2tan^-1x+sin^-1  ((2x)/(1+x^2))`

`=pi-sin^-1((2x)/(1+x^2))+sin^-1((2x)/(1+x^2))`     `[because 2tan^-1x=pi - sin^-1((2x)/(1+x^2)),x>1]`

`=pi`

(2) For 1,

`=2tan^-1x+sin^-1  ((2x)/(1+x^2))`

`=2tan^-1(1)+sin^-1((2(1))/(1+(1)^2))`

`=2tan^-1(1)+sin^-1(1)`

`=2(pi/4)+pi/2`

= π

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 6 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin(sin^-1  1/5+cos^-1x)=1`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of sin1 (sin 1550°).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×