Advertisements
Advertisements
प्रश्न
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
उत्तर
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
LHS = `tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))`
`=tan^-1((1-x^2)/(2x))+pi/2-tan^-1((1-x^2)/(2x))` `[becausetan^-1x+cot^-1x=pi/2]`
`=pi/2=` RHS
APPEARS IN
संबंधित प्रश्न
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`