Advertisements
Advertisements
प्रश्न
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
उत्तर
Let: a = tan m
b = tan n
x = tan y
Now,
`sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`
`=>sin^-1 (2tanm)/(1+tan^2m)-cos^-1 (1-tan^2n)/(1+tan^2n)=tan^-1 (2tany)/(1-tan^2y)`
`=>sin^-1(sin2m)-cos^-1(cos2n)=tan^-1(tan2y)` `[becausesin2x=(2tanx)/(1+tan^2x)andcos2x=(1-tan^2x)/(1+tan^2x)]`
`=>2m-2n=2y`
`=>m-n=y`
`=>tan^-1a-tan^-1b=tan^-1x` `[becausea=tanm,b=tannandx=tany]`
`=>tan^-1 (a-b)/(1+ab)=tan^-1x` `[becausetan^-1x-tan^-1y=tan^-1 (x-y)/(1+xy)]``=>(a-b)/(1+ab)=x`
`therefore(a-b)/(1+ab)=x`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan4)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(sec^-1 17/8)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The period of the function f(x) = tan3x is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`