मराठी

If `Sin^-1 (2a)/(1+A^2)-cos^-1 (1-b^2)/(1+B^2)=Tan^-1 (2x)/(1-x^2)`, Then Prove That `X=(A-b)/(1+Ab)` - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`

बेरीज

उत्तर

Let: a = tan m 
      b = tan n 
      x = tan y

Now,

`sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`

`=>sin^-1  (2tanm)/(1+tan^2m)-cos^-1  (1-tan^2n)/(1+tan^2n)=tan^-1  (2tany)/(1-tan^2y)`

`=>sin^-1(sin2m)-cos^-1(cos2n)=tan^-1(tan2y)`      `[becausesin2x=(2tanx)/(1+tan^2x)andcos2x=(1-tan^2x)/(1+tan^2x)]`

`=>2m-2n=2y`

`=>m-n=y`

`=>tan^-1a-tan^-1b=tan^-1x`      `[becausea=tanm,b=tannandx=tany]`

 

`=>tan^-1  (a-b)/(1+ab)=tan^-1x`      `[becausetan^-1x-tan^-1y=tan^-1  (x-y)/(1+xy)]``=>(a-b)/(1+ab)=x`

`therefore(a-b)/(1+ab)=x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 3 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(sec^-1  17/8)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1)(3x-1)`.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The period of the function f(x) = tan3x is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×