मराठी

`4tan^-1 1/5-tan^-1 1/239=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

`4tan^-1  1/5-tan^-1  1/239=pi/4`

उत्तर

LHS = `4tan^-1  1/5-tan^-1  1/239`

`=2tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1  1/239`     `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=2tan^-1{(2/5)/(24/25)}-tan^-1  1/239`

`=2tan^-1  5/12-tan^-1  1/239`

`=tan^-1{(2xx5/12)/(1-(5/12)^2)}-tan^-1  1/239`    `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(5/6)/(119/144)}-tan^-1  1/239`

`=tan^-1  120/119-tan^-1  1/239`

`=tan^-1((120/119-17/239)/(1+120/119xx1/239))`      `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1 1=pi/4=`RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.1 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos{sin^-1(-7/25)}`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin (cot−1 x).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×