Advertisements
Advertisements
Question
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solution
LHS = `4tan^-1 1/5-tan^-1 1/239`
`=2tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1 1/239` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=2tan^-1{(2/5)/(24/25)}-tan^-1 1/239`
`=2tan^-1 5/12-tan^-1 1/239`
`=tan^-1{(2xx5/12)/(1-(5/12)^2)}-tan^-1 1/239` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(5/6)/(119/144)}-tan^-1 1/239`
`=tan^-1 120/119-tan^-1 1/239`
`=tan^-1((120/119-17/239)/(1+120/119xx1/239))` `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1 1=pi/4=`RHS
APPEARS IN
RELATED QUESTIONS
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The period of the function f(x) = tan3x is ____________.