English

In a ∆ Abc, If C is a Right Angle, Then Tan − 1 ( a B + C ) + Tan − 1 ( B C + a ) = (A) π 3 (B) π 4 (C) 5 X 2 (D) π 6 - Mathematics

Advertisements
Advertisements

Question

In a ∆ ABC, if C is a right angle, then
tan1(ab+c)+tan1(bc+a)=

 

 

Options

  • π3

  • π4

  • 5x2

  • π6

MCQ

Solution

(b) π4

We know
tan1x+tan1y=tan1(x+y1xy)
tan1(ab+c)+tan1(bc+a)=tan1(ab+c+bc+a1ab+c×bc+a)
=tan1(ac+a2+b2+bc(b+c)(c+a)ac+c2+bc(b+c)(c+a))
=tan1(ac+c2+bcac+c2+bc)[a2+b2=c2]
=tan1(1)
=tan1(tanπ4)
=π4

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 27 | Page 121

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


sin-1(sin3)


Evaluate the following:

sec-1(sec 7π3)


Evaluate the following:

cosec-1(cosec 13π6)


Evaluate the following:

cot-1{cot(-8π3)}


Evaluate the following:

sin(sin-1 725)

 


Solve: cos(sin-1x)=16


Evaluate:

cos(tan-1 34)


sin(sin-1 15+cos-1x)=1


Prove the following result:

sin-1 1213+cos-1 45+tan-1 6316=π


Prove the following result:

tan-1 14+tan-1 29=sin-1 15


Find the value of tan-1 (xy)-tan-1(x-yx+y)


Solve the following equation for x:

tan-1 2x+tan-1 3x=nπ+3π4


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =π12> 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 (879), x > 0


sin-1 513+cos-1 35=tan-1 6316


Evaluate the following:

sin(12cos-1 45)


2tan-1 15+tan-1 18=tan-1 47


Find the value of the following:

tan-1{2cos(2sin-1 12)}


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 (1-x21+x2) in terms of tan−1 x.


If −1 < x < 0, then write the value of sin-1(2x1+x2)+cos-1(1-x21+x2)


Write the value of cos(2sin113)


Write the value of sin1 (sin 1550°).


Write the value of cos−1 (tan3π4)


Write the value of cos−1 (cos 6).


Write the principal value of sin-1(-12)


Write the principal value of cos1(cos2π3)+sin1(sin2π3)


Write the value of sin1(sin3π5)


Find the value of cos1(cos13π6)


If tan1(1+x21x21+x2+1x2)  = α, then x2 =




The number of real solutions of the equation 1+cos2x=2sin1(sinx),πxπ


The value of sin1(cos33π5) is 

 


If sin1(2a1a2)+cos1(1a21+a2)=tan1(2x1x2), where a,x(0,1) , then, the value of x is

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= 5150


Find the value of sin-1(cos(33π5)).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.