English

The Value of Sin ( 1 4 Sin − 1 √ 63 8 ) is (A) 1 √ 2 (B) 1 √ 3 (C) 1 2 √ 2 (D) 1 3 √ 3 - Mathematics

Advertisements
Advertisements

Question

The value of sin (14sin1638) is

 

Options

  • 12

  • 13

  • 122

  • 133

MCQ

Solution

(c) 122

Let sin1638=y

Then,
siny=638
cosy=1sin2y=16364=18
Now, we have
sin(14sin1638)=sin(14y)
=1cosy22[cos2x=12sin2x]
=11+cosy22[cos2x=2cos2x1]
=11+1822
=19162
=1342
=18
=122

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 28 | Page 121

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of  f(x)=2cos-12x+sin-1x.


sin-1(sin 5π6)


sin-1(sin 13π7)


Evaluate the following:

cos-1(cos4)


Evaluate the following:

tan-1(tan 6π7)


Evaluate the following:

tan-1(tan1)


Evaluate the following:

cot-1(cot π3)


Write the following in the simplest form:

tan-1{1+x2+1x},x0


Prove the following result

tan(cos-1 45+tan-1 23)=176


Evaluate:

cosec{cot-1(-125)}


Evaluate: 

cot(sin-1 34+sec-1 43)


Find the value of tan-1 (xy)-tan-1(x-yx+y)


Solve the following equation for x:

tan−1(1-x1+x)-12 tan−1x = 0, where x > 0


9π8-94sin-1 13=94sin-1 223


If cos-1 x2+cos-1 y3=α, then prove that  9x2-12xycosa+4y2=36sin2a.


Solve the equation cos-1 ax-cos-1 bx=cos-1 1b-cos-1 1a


Evaluate the following:

sin(12cos-1 45)


Evaluate the following:

sin(2tan-1 23)+cos(tan-13)


tan-1 17+2tan-1 13=π4


Solve the following equation for x:

2tan-1(sinx)=tan-1(2sinx),xπ2


Solve the following equation for x:

cos-1(x2-1x2+1)+12tan-1(2x1-x2)=2x3


If x > 1, then write the value of sin−1 (2x1+x2) in terms of tan−1 x.


Evaluate sin (tan134)


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of sec1(12)


Find the value of cos1(cos13π6)


The number of solutions of the equation tan12x+tan13x=π4 is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


It tan1x+1x1+tan1x1x=tan1   (−7), then the value of x is

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


Prove that : tan1(1+x2+1x21+x21x2)=π4+12cos1x2;1<x<1.


If tan1(11+1.2)+tan1(11+2.3)+...+tan1(11+n.(n+1))=tan1θ , then find the value of θ.


Find the domain of sec-1x-tan-1x


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= 5150


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.