English

If 4 Sin−1 X + Cos−1 X = π, Then What is the Value of X? - Mathematics

Advertisements
Advertisements

Question

If 4 sin−1 x + cos−1 x = π, then what is the value of x?

Solution

We know that
\[\sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}\]
\[\therefore 4 \sin^{- 1} x + \cos^{- 1} x = \pi\]
\[ \Rightarrow 4 \sin^{- 1} x + \frac{\pi}{2} - \sin^{- 1} x = \pi \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 3 \sin^{- 1} x = \frac{\pi}{2}\]
\[ \Rightarrow \sin^{- 1} x = \frac{\pi}{6}\]
\[ \Rightarrow x = \sin\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{2}\]
∴ \[x = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 36 | Page 118

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×