Advertisements
Advertisements
Question
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solution
tan−1`((1-x)/(1+x))-1/2` tan−1(x) = 0
⇒ `tan^-1((1-x)/(1+x))=1/2tan^-1(x)`
⇒ `tan^-1 1-tan^-1x=1/2tan^-1(x)`
⇒ `tan^-1 1=3/2tan^-1(x)`
⇒ `pi/4=3/2tan^-1(x)`
⇒ `pi/6=tan^-1(x)`
⇒ `x=1/sqrt3`
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin (17pi)/8)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1) x-tan^(-1)x`