Advertisements
Advertisements
Question
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Solution
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1{cos ((4pi)/3)}=cos^-1{cos(2pi-(2pi)/3)}`
`=cos^-1{cos((2pi)/3)}`
`=(2pi)/3`
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of sin `["cos"^-1 (7/25)]` is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`