Advertisements
Advertisements
Question
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Solution
We know that the maximum value of `sin^-1x. sin^-1y, sin^-1z is pi/2` and minimum value of `sin^-1x, sin^-1y, sin^-1z is pi/2`
Now,
For maximum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(pi/2)^2+(pi/2)^2+(pi/2)^2`
`=3/4pi^2=`RHS
and For minimum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(-pi/2)^2+(-pi/2)^2+(-pi/2)^2`
`=3/4pi^2` = RHS
Now, For maximum value
`sin^-1x=pi/2,sin^-1y=pi/2,sin^-1z=pi/2`
⇒ `x = sin pi/2,y=sin pi/2, z = sin pi/2`
⇒ x = 1, y = 1, z = 1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
and for minimum value
`sin^-1x=-pi/2,sin^-1y=-pi/2,sin^-1z=-pi/2`
⇒ `x=sin(-pi/2),y=sin(-pi/2),z=sin(-pi/2)`
⇒ x = -1, y = -1, z = -1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
APPEARS IN
RELATED QUESTIONS
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos−1 (cos 6).
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
tanx is periodic with period ____________.