English

Prove That: `Cos^-1 4/5+Cos^-1 12/13=Cos^-1 33/65` - Mathematics

Advertisements
Advertisements

Question

Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`

Solution

LHS = `cos^-1  4/5+cos^-1  12/13`

`=cos^-1[4/5xx12/13-sqrt(1-(4/5)^2)sqrt(1-(12/13)^2)]`      `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`

`=cos^-1[48/65-3/5xx5/13]`

`=cos^-1((48-15)/65)`

`=cos^-1  33/65=` RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.13 [Page 92]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 4 | Page 92

RELATED QUESTIONS

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`sec{cot^-1(-5/12)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of sin1 (sin 1550°).


Write the value of cos−1 (cos 6).


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×