English

If θ = Sin−1 {Sin (−600°)}, Then One of the Possible Values of θ is (A) π 3 (B) π 2 (C) 2 π 3 (D) − 2 π 3 - Mathematics

Advertisements
Advertisements

Question

If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 

Options

  • `pi/3`

  • `pi/2`

  • `(2pi)/3`

  • `-(2pi)/3`

MCQ

Solution

(a) `pi/3`

We know
\[\sin^{- 1} \left( \sin{x} \right) = x\]
Now,
\[\theta = \sin^{- 1} \left\{ \sin\left( - {600}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {720}^\circ - {600}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {120}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {180}^\circ - {120}^\circ \right) \right\} \left[ \because \sin{x} = \sin\left( \pi - x \right) \right]\]
\[ = \sin^{- 1} \left( \sin {60}^\circ \right)\]
\[ = {60}^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 22 | Page 121

RELATED QUESTIONS

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of cos−1 (cos 6).


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×