Advertisements
Advertisements
Question
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
Options
`pi/3`
`pi/2`
`(2pi)/3`
`-(2pi)/3`
Solution
(a) `pi/3`
We know
\[\sin^{- 1} \left( \sin{x} \right) = x\]
Now,
\[\theta = \sin^{- 1} \left\{ \sin\left( - {600}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {720}^\circ - {600}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {120}^\circ \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( {180}^\circ - {120}^\circ \right) \right\} \left[ \because \sin{x} = \sin\left( \pi - x \right) \right]\]
\[ = \sin^{- 1} \left( \sin {60}^\circ \right)\]
\[ = {60}^\circ\]
APPEARS IN
RELATED QUESTIONS
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos−1 (cos 6).
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`