English

If Cos − 1 X > Sin − 1 X , Then (A) 1 √ 2 < X ≤ 1 (B) 0 ≤ X < 1 √ 2 (C) − 1 ≤ X < 1 √ 2 (D) X > 0 - Mathematics

Advertisements
Advertisements

Question

If \[\cos^{- 1} x > \sin^{- 1} x\], then

Options

  • \[\frac{1}{\sqrt{2}} < x \leq 1\]

  •  \[0 \leq x < \frac{1}{\sqrt{2}}\]

  •  \[- 1 \leq x < \frac{1}{\sqrt{2}}\]

  •  x > 0

MCQ

Solution

\[\cos^{- 1} x > \sin^{- 1} x\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{2} - \cos^{- 1} x\]
\[ \Rightarrow 2 \cos^{- 1} x > \frac{\pi}{2}\]
\[ \Rightarrow \cos^{- 1} x > \frac{\pi}{4}\]
\[ \Rightarrow x > \cos\frac{\pi}{4}\]
\[ \Rightarrow x > \frac{1}{\sqrt{2}}\]

We know that the maximum value of cosine fuction is 1.

\[\therefore \frac{1}{\sqrt{2}} < x \leq 1\]

Hence, the correct answer is option(a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 26 | Page 121

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cot(cos^-1  3/5)`


Solve: `cos(sin^-1x)=1/6`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×